19세기 말, 하인리히 슐리만(1822.1.6~1890.12.26, 독일의 고대 연구가)이 터키에서 트로이 유적지를 발굴할 때까지 트로이 전쟁은 신화로 여겨졌다. 트로이 전쟁은 여신의 질투를 받은 미녀 헬레나를 둘러싸고 벌어진 고대 서양과 동양 사이의 최초의 세계 대전이다. 아킬레스와 아가멤논과 같은 신과 인간의 중간에 위치한 영웅들의 대결이 실제로 벌어진 역사였던 것이다.
영화 ‘트로이’는 지금으로부터 3200년 전으로 거슬러 올라가 그리스 전역을 통치하길 원하는 미케네의 왕인 아가멤논과 데살리와의 전투 장면으로 시작된다. 아가멤논은 데살리의 왕에게 살육을 원치 않으니 양쪽의 장수끼리 싸워 이기는 쪽이 전쟁에서 이기는 것으로 하자고 제안한다. 데살리에서는 거구의 보아그리우스가 나오고 아가멤논 쪽에서는 아킬레스가 나온다.
그 결과 아킬레스는 단칼에 상대 장군을 죽이고 전쟁에서 쉽게 승리로 이끈다. 이 장면은 트로이 전쟁의 주인공이 아킬레스라는 것을 암시하는 것이고, 신화에 따르면 트로이 전쟁은 세상에 너무 많아진 영웅을 한꺼번에 제거하고 아킬레스의 영광을 위하여 제우스가 치밀하게 만든 결과였다.
얼마 뒤, 지중해의 명실상부한 통치자가 되고 싶은 아가멤논은 그리스 연합군을 이끌고 트로이를 공격하기 위해 출발한다. 그리스 연합군 장군인 아킬레스도 전쟁에 참여하게 되고, 트로이의 왕자인 헥토르도 그리스와의 전쟁이 피할 수 없음을 알고 전쟁 준비를 한다.
아킬레스의 군대가 트로이 군대와 맞서 싸워서 드디어 트로이 해안에 상륙한다. 성 안으로 후퇴한 트로이군은 전쟁에 대한 회의를 연다. 여러 내용이 오가는 가운데 전쟁을 유발시킨 트로이 왕자 파리스는 이것은 국가 간의 전쟁이 아니라 두 남자 간의 문제이고 자신 때문에 트로이 사람들이 죽는 것을 원치 않는다고 한다. 그리고 헬레나의 소유권을 놓고 메넬라오스와 결투를 하겠다고 말한다.
다음 날 아침, 성 앞에서 그리스 군을 기다리고 있던 헥토르와 파리스는 전차를 타고 등장하는 아가멤논과 메넬라오스와 담판을 벌인다. 그들이 타고 있는 전차는 바퀴가 두 개 달린 것이었다. 여기서 잠깐, 인간은 언제부터 바퀴가 달린 것을 탔을까?
■ 바퀴의 기원
지금부터 바퀴와 관련된 내용을 알아보자. 지금부터 약 6천 년 전에 고대 메소포타미아 사람들이 처음으로 바퀴라는 대단한 것을 발명했다. 처음에 이것은 딱딱한 나무판을 잘라내어 가운데에 구멍을 뚫어 회전축을 끼운 단순한 것이었으나 점차 3조각의 판자를 금속 띠 판으로 연결시켜 사용했다. 그 후 바퀴의 활용이 많아지며 바빌로니아와 아시리아 사람들은 그것들을 이용하여 짐마차나 전쟁에서의 전차(戰車)를 만들었다. BC 2000년경에는 판으로 된 바퀴를 개량하여 오늘날과 같이 가벼운 살을 가진 바퀴(spoked wheel)가 등장했다.
그림.나무판자를 금속 띠 판으로 연결시켜 짜 맞춘 바퀴
바퀴의 기원에 대해서는 여러 가지 설이 있다. 그중에서 가장 설득력 있는 것은 굴림대의 불편함을 해결하기 위하여 연구한 끝에 바퀴가 탄생되었다는 것이다. 굴림대는 무거운 짐을 옮길 때 그 밑에 넣고 굴리는 통나무로, 짐이 이동하면 뒤에 남는 불편함과 통나무이기 때문에 무겁다는 불리한 점이 있다. 이를 개량하려고 막대 같은 굴대(차축)의 양쪽 끝에 원판을 붙이는 착상을 하여 바퀴를 만들게 된 것으로 여겨진다.
그 후 바퀴의 무게를 줄이기 위한 메소포타미아 사람들의 노력으로 살을 가진 바퀴가 발명되었고, 기원전 1600년경에 이집트에 전파되며 유럽 전역에 퍼졌다고 한다. 중국에서도 기원전 1300년경에 살이 있는 바퀴가 달린 전차에 관한 기록이 있는 것으로 보아 바퀴는 훨씬 전부터 사용된 것으로 보인다. 우리나라에서도 아주 오래전부터 바퀴가 사용되었음을 말해주는 유물이 발굴되기도 했다.
■ 원주율의 역사
원에 관한 성질 가운데 가장 중요한 것은 바로 원주율이다. 메소포타미아 사람들의 바퀴와 도르래에 관한 관심은 기하학적으로 원을 공부하게 만들었다. 하지만 원에 관한 지식은 그들보다는 이집트 사람들이 더 많았다. 메소포타미아 사람들은 원의 둘레를 지름의 3배라고 생각한 반면, 이집트 사람들은 원의 둘레를 지름의 3.14배라고 생각했다.
한편 고대 그리스에서는 지름과 원의 둘레에 대한 이 비율은 3.1416에 가깝다고 생각했다. 실제로 원주율 π는 3.1415926535로 시작하여 끝없이 계속되는 무리수이다. π는 원이나 구에서 찾을 수 있는 특별한 값으로 그리스 최고의 철학자인 아리스토텔레스는 원과 구에 대하여 다음과 같이 말했다.
“원과 구, 이것들만큼 신성한 것에 어울리는 형태는 없다. 그러기에 신은 태양이나 달, 그 밖의 별들, 그리고 우주 전체를 구 모양으로 만들었고, 태양과 달 그리고 모든 별들이 원을 그리면서 지구둘레를 돌도록 하였던 것이다.”
원은 한 평면 위의 한 정점(원의 중심)에서 일정한 거리(반지름)에 있는 점들의 집합이다. 따라서 원은 반지름의 길이에 따라 크기만 달라질 뿐 모양은 모두 똑같다. 그리고 원의 둘레의 길이는 반지름의 길이에 따라 정해진다. 특히 원 둘레 길이와 지름은 원의 크기와 상관없이 일정한 비를 이루는데, 이 값을 원주율이라고 하고 기호 π로 나타낸다. 이 기호는 ‘둘레’를 뜻하는 그리스어 ‘περιμετροζ’의 머리글자로 18세기 스위스의 수학자 오일러(Leonhard Euler, 1707.4.15~1783.9.18)가 처음 사용했다.
반지름의 길이가 주어졌을 때 원 둘레 길이와 원주율 π를 구하려는 노력은 아주 오래전부터 있어왔다. 아르키메데스도 π에 관심이 많았기 때문에 그 값을 정확하게 구하기 위하여 많은 노력을 했다. 당시에는 원 둘레 길이를 직접 측정하기 어려웠기 때문에 아르키메데스는 원에 내접하고 외접하는 정다각형을 이용하여 원의 둘레의 길이를 구했다.
즉, (내접하는 정n각형의 둘레의 길이) < (원의 둘레) < (외접하는 정n각형의 둘레의 길이) 이므로 원의 둘레 길이의 근삿값을 구할 수 있었다.
위 그림은 반지름의 길이가 1인 원에 내접하고 외접하는 정사각형을 그린 것이다. 먼저 외접하는 큰 사각형의 둘레의 길이는 OI가 1이므로 다음과 같다.
내접하는 정사각형의 둘레의 길이를 구하기 위하여 EF의 길이를 구하면 된다. 그런데 △OEF는 OE = OF = 1인 직각 이등변 삼각형이므로 피타고라스의 정리에 의하여 다음과 같이 EF의 길이를 구할 수 있다.
그러므로 내접하는 정사각형인 □EFGH의 둘레의 길이는 다음과 같다.
따라서 원의 둘레는 5.6보다는 크고 8보다는 작다고 할 수 있다. 그리고 반지름의 길이가 1인 원의 둘레는 π의 두 배이므로 π는 2.8보다 크고 4보다 작다고 할 수 있다.
위 그림과 같이 정8각형을 원에 외접하고 내접하게 그리면 조금 더 참값에 가까운 π의 근삿값을 구할 수 있다. 아르키메데스는 이와 같은 방법으로 정96각형을 이용하여 원의 넓이와 둘레의 길이를 구했고, 원주율 π의 근삿값을 3.1408… < π <3.1428… 라고 했다. 아르키메데스의 이런 노력 때문에 오늘날 π를 ‘아르키메데스의 수’라고도 부른다.
수학자들은 지금 이 순간에도 좀 더 정확한 π의 값을 구하기 위하여 노력하고 있다. 그리고 그런 수학자들 가운데 어떤 이들은 원주율을 기념하기 위하여 3월 14일을 ‘파이 데이(π day)’라고 이름 붙였다. 특히 미국에서 활동하고 있는 ‘π-Club’이라는 모임에서는 π=3.1415926…로부터 3월 14일 오후 1시 59분 26초에 모여 π모양의 파이를 먹으며 이 날을 축하한다. 그리고 π값 외우기, π에 나타나는 숫자에서 생일 찾아내기 같은 게임과 원과 관련된 놀이기구의 길이, 넓이, 부피 구하기와 같은 퀴즈 대회를 연다.
2005년 10월 20일에 일본 도쿄대학교의 야수마사(Yasumasa Kanada)는 컴퓨터를 601시간 56분 사용하여 π의 값을 소수점 1조2411억 자리까지 얻었다. 이 숫자는 어느 정도일까? 보통 우리가 컴퓨터를 이용하여 문서를 편집할 때 사용하는 A4용지에 맞게 쓴다고 생각해 보자. 그러면 한 줄에 모두 82개의 숫자를 쓸 수 있고, 모두 41줄을 쓸 수 있으므로 A4 용지 한 장에는 3,362개의 숫자를 쓸 수 있다. 결국 야수마사가 얻은 π의 값을 쓰기 위해서는 모두 369,155,265장의 종이가 필요하다. 실로 엄청난 숫자이다.
한편 영화 ‘트로이 전쟁’은 트로이 목마로 트로이가 불타고, 파리스가 쏜 화살에 발뒤꿈치를 맞은 아킬레스가 죽으며 끝난다. ‘아는 만큼 보인다.’라는 말이 있다. 영화를 감상할 때, 영화와 관련된 여러 가지 사실을 알고 영화를 감상한다면 보다 즐거운 영화 보기가 될 것이다. 특히 그 속에 숨겨져 있던 수학적 사실을 찾아 이해하며 영화를 감상한다면 만든 이의 의도를 좀 더 정확하게 파악할 수 있다. 여러분도 영화에 담겨진 수학을 발견하며 즐거워하는 수학자의 기분을 함께 느껴보기 바란다.
글 : 이광연 교수
'KISTI와과학' 카테고리의 다른 글
지퍼에 옷이 끼었을 때 쉽게 빼는 법 (KISTI) (0) | 2014.03.29 |
---|---|
내장지방의 뿌리가 밝혀졌다 (KISTI) (0) | 2014.03.28 |
음악 들어도 신나지 않은 사람 있다 (KISTI) (0) | 2014.03.26 |
지하수의 방사능 변화, 미생물이 답 (KISTI) (0) | 2014.03.25 |
마요네즈로 화재를 진압한다? (KISTI) (0) | 2014.03.24 |